skip to main content


Search for: All records

Creators/Authors contains: "Luther, Joseph M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mixed organic–inorganic halide perovskite-based solar cells have attracted interest in recent years due to their potential for both terrestrial and space applications. Analysis of interfaces is critical to predicting device behavior and optimizing device architectures. Most advanced tools to study buried interfaces are destructive in nature and can induce further degradation. Ion beam techniques, such as Rutherford backscattering spectrometry (RBS), is a useful non-destructive method to probe an elemental depth profile of multilayered perovskite solar cells (PSCs) as well as to study the inter-diffusion of various elemental species across interfaces. Additionally, PSCs are becoming viable candidates for space photovoltaic applications, and it is critical to investigate their radiation-induced degradation. RBS can be simultaneously utilized to analyze the radiation effects induced by He+ beam on the device, given their presence in space orbits. In the present work, a 2 MeV He+ beam was used to probe the evidence of elemental diffusion across PSC interfaces with architecture glass/ITO/SnO2/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/spiro-OMeTAD/MoO3/Au. During the analysis, the device active area was exposed to an irradiation equivalent of up to 1.62 × 1015 He+/cm2, and yet, no measurable evidence (with a depth resolution ∼1 nm) of beam-induced ion migration was observed, implying high radiation tolerance of PSCs. On the other hand, aged PSCs exhibited indications of the movement of diverse elemental species, such as Au, Pb, In, Sn, Br, and I, in the active area of the device, which was quantified with the help of RBS.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Natalie Lok Kwan Li, PhD (Ed.)
    Perovskite photovoltaics have been shown to recover, or heal, after radiation damage. Here, we deconvolve the effects of radiation based on different energy loss mechanisms from incident protons which induce defects or can promote efficiency recovery. We design a dual dose experiment first exposing devices to low-energy protons efficient in creating atomic displacements. Devices are then irradiated with high-energy protons that interact differently. Correlated with modeling, high-energy protons (with increased ionizing energy loss component) effectively anneal the initial radiation damage, and recover the device efficiency, thus directly detailing the different interactions of irradiation. We relate these differences to the energy loss (ionization or non-ionization) using simulation. Dual dose experiments provide insight into understanding the radiation response of perovskite solar cells and highlight that radiation-matter interactions in soft lattice materials are distinct from conventional semiconductors. These results present electronic ionization as a unique handle to remedying defects and trap states in perovskites. 
    more » « less
    Free, publicly-accessible full text available January 24, 2025
  3. Free, publicly-accessible full text available October 1, 2024
  4. Prashant V. Kamat (Ed.)
    Formamidinium cesium (FACs) perovskites solar cells have been shown to be among the most stable metal halide perovskites. Here, high-temperature data are presented which systematically and statistically demonstrate the high thermal operation of this system to temperatures in excess of 200 °C. Device measurements between 250 K and 490 K show that while some loss of performance is evident at higher temperature, this is driven by reversible halide segregation with no evidence of a structural phase transition over the measurement range probed. Moreover, upon reduction of the temperature back to ambient the power conversion efficiency is retained. 
    more » « less
    Free, publicly-accessible full text available May 12, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Earis, Philip (Ed.)
    Perovskite photovoltaics (PVs) are under intensive development for promise in terrestrial energy production. Soon, the community will find out how much of that promise may become reality. Perovskites also open new opportunities for lower cost space power. However, radiation tolerance of space environments requires appropriate analysis of relevant devices irradiated under representative radiation conditions. We present guidelines designed to rigorously test the radiation tolerance of perovskite PVs. We review radiation conditions in common orbits, calculate nonionizing and ionizing energy losses (NIEL and IEL) for perovskites, and prioritize proton radiation for effective nuclear interactions. Low-energy protons (0.05–0.15 MeV) create a representative uniform damage profile, whereas higher energy protons (commonly used in ground-based evaluation) require significantly higher fluence to accumulate the equivalent displacement damage dose due to lower scattering probability. Furthermore, high-energy protons may ‘‘heal’’ devices through increased electronic ionization. These procedural guidelines differ from those used to test conventional semiconductors. 
    more » « less
  7. null (Ed.)